SearchCans

AI-Powered E-commerce: Search Data for Personalization & Dynamic Pricing

AI is transforming online retail with personalized recommendations, dynamic pricing, inventory optimization, and conversational commerce. Learn implementation strategies for AI-powered e-commerce in 2025.

4 min read

E-commerce has become an AI battleground. Companies using AI for personalization, pricing, and inventory management are seeing 20-30% revenue increases while competitors struggle with generic experiences and stockouts.

Personalized Product Recommendations

Impact: 35% of Amazon’s revenue comes from recommendations.

Types of Recommendation Systems:

1. Collaborative Filtering

“Users like you also bought…“

2. Content-Based

“Similar products based on features”

3. Hybrid

Combination of both

Basic Recommendation Engine Implementation

class RecommendationEngine:
    def recommend_products(self, user_id, context):
        # User profile
        user_profile = self.get_user_profile(user_id)
        
        # Collaborative filtering
        collaborative_recs = self.collaborative_filter(
            user_id, 
            similar_users_count=100
        )
        
        # Content-based filtering
        browsing_history = self.get_browsing_history(user_id)
        content_recs = self.content_based_filter(browsing_history)
        
        # Context-aware adjustments
        if context.season == "winter":
            # Boost seasonal items
            seasonal_boost = self.apply_seasonal_weights(
                collaborative_recs + content_recs
            )
        
        # Hybrid ranking
        final_recs = self.hybrid_rank(
            collaborative_recs,
            content_recs,
            user_profile,
            context
        )
        
        return final_recs[:10]

Advanced Real-Time Personalization

# Real-time personalization with session data
def real_time_recommendations(user_session):
    # Track real-time behavior
    recent_views = user_session.get_recent_views(minutes=30)
    cart_items = user_session.cart
    
    # Intent prediction
    intent = ml_model.predict_intent(recent_views, cart_items)
    
    if intent == "researching":
        # Show comparison and reviews
        return get_comparison_products(recent_views)
    elif intent == "ready_to_buy":
        # Show complementary products
        return get_complementary_products(cart_items)
    else:
        # Show trending in category
        return get_trending_products(recent_views[0].category)

Dynamic Pricing

AI adjusts prices in real-time based on demand, competition, and inventory.

Strategy:

class DynamicPricingEngine:
    def calculate_optimal_price(self, product_id):
        # Get competitor prices
        competitor_prices = self.get_competitor_prices(product_id)
        
        # Current demand
        demand_score = self.predict_demand(
            product_id,
            time_of_day=datetime.now().hour,
            day_of_week=datetime.now().weekday(),
            seasonality=self.get_seasonal_factor()
        )
        
        # Inventory level
        stock_level = self.get_stock_level(product_id)
        
        # ML pricing model
        optimal_price = pricing_model.predict({
            "base_price": product.base_price,
            "competitor_avg": np.mean(competitor_prices),
            "competitor_min": min(competitor_prices),
            "demand_score": demand_score,
            "stock_level": stock_level,
            "margin_target": product.target_margin
        })
        
        # Apply business rules
        final_price = self.apply_constraints(
            optimal_price,
            min_price=product.cost * 1.2,  # 20% minimum margin
            max_price=product.msrp
        )
        
        return final_price

Competitor Price Monitoring:

def monitor_competitor_prices(product_name):
    # Search for product on competitor sites
    search_results = serp_api.search(
        query=f"{product_name} buy online",
        num=20
    )
    
    prices = []
    for result in search_results:
        if is_ecommerce_site(result.domain):
            # Extract price from page
            content = reader_api.extract(result.url)
            price = extract_price(content)
            
            if price:
                prices.append({
                    "merchant": result.domain,
                    "price": price,
                    "url": result.url,
                    "timestamp": datetime.now()
                })
    
    return prices

Learn about building price monitoring systems.

AI-powered search understands intent, not just keywords.

Features:

  • Semantic search
  • Visual search (upload image, find product)
  • Voice search
  • Auto-correct and suggestions
class IntelligentSearch:
    def search(self, query, user_context):
        # Query understanding
        parsed_query = self.parse_query(query)
        
        # Intent detection
        intent = self.detect_intent(parsed_query)
        
        if intent.type == "navigational":
            # User wants specific category
            return self.get_category_results(intent.category)
        
        elif intent.type == "transactional":
            # User ready to buy
            results = self.product_search(parsed_query)
            return self.rank_by_conversion_probability(results, user_context)
        
        else:  # informational
            # Show guides, comparisons
            return self.content_search(parsed_query)
    
    def semantic_search(self, query):
        # Convert query to embedding
        query_embedding = embedding_model.encode(query)
        
        # Vector similarity search
        similar_products = vector_db.similarity_search(
            query_embedding,
            k=50
        )
        
        # Rerank with business logic
        ranked = self.rerank(similar_products, query)
        
        return ranked

Inventory Optimization

AI predicts demand and optimizes stock levels.

class InventoryOptimizer:
    def optimize_inventory(self, product_id):
        # Demand forecast
        forecast = self.forecast_demand(
            product_id,
            horizon_days=90
        )
        
        # External factors
        external_data = {
            "competitor_stock": self.check_competitor_stock(product_id),
            "trending_score": self.get_trend_score(product_id),
            "seasonality": self.get_seasonal_factor(product_id),
            "promotional_calendar": self.get_upcoming_promotions()
        }
        
        # Optimal order quantity
        optimal_order = self.calculate_order_quantity(
            forecast,
            current_stock=self.get_stock_level(product_id),
            lead_time=product.supplier_lead_time,
            holding_cost=product.holding_cost,
            stockout_cost=product.stockout_cost
        )
        
        return {
            "recommended_order": optimal_order,
            "reorder_point": forecast.mean * product.lead_time,
            "safety_stock": forecast.std * 1.96  # 95% service level
        }

Conversational Commerce

AI chatbots guide shopping journeys.

class ShoppingAssistant:
    def handle_conversation(self, user_message, session):
        # Intent classification
        intent = self.classify_intent(user_message)
        
        if intent == "product_inquiry":
            # Extract product details from query
            product_info = self.extract_product_requirements(user_message)
            
            # Search and recommend
            products = self.search_products(product_info)
            
            return {
                "message": f"I found {len(products)} products matching your criteria",
                "products": products[:5],
                "follow_up": "Would you like me to narrow down the options?"
            }
        
        elif intent == "comparison":
            # Compare products
            products = self.extract_products_to_compare(user_message)
            comparison = self.generate_comparison(products)
            
            return {
                "message": "Here's how they compare:",
                "comparison_table": comparison,
                "recommendation": self.recommend_best_fit(products, session.user_profile)
            }
        
        elif intent == "order_tracking":
            order_id = self.extract_order_id(user_message)
            status = self.get_order_status(order_id)
            
            return {
                "message": f"Your order is {status.current_stage}",
                "expected_delivery": status.estimated_delivery,
                "tracking_url": status.tracking_link
            }

Visual Search and AR

Upload a photo, find the product.

def visual_search(image):
    # Extract features from image
    image_embedding = vision_model.encode(image)
    
    # Find similar products
    similar_products = vector_db.similarity_search(
        image_embedding,
        k=20
    )
    
    # Rerank by exact match confidence
    reranked = visual_reranker.rank(image, similar_products)
    
    return reranked

Augmented Reality:

  • Virtual try-on (clothes, makeup)
  • Furniture placement (see sofa in your room)
  • Size visualization

Customer Lifetime Value Prediction

Identify high-value customers and personalize accordingly.

def predict_customer_ltv(customer_id):
    # Historical data
    purchase_history = get_purchase_history(customer_id)
    engagement = get_engagement_metrics(customer_id)
    
    # Feature engineering
    features = {
        "recency": days_since_last_purchase(customer_id),
        "frequency": len(purchase_history),
        "monetary": sum([p.amount for p in purchase_history]),
        "avg_order_value": np.mean([p.amount for p in purchase_history]),
        "product_diversity": len(set([p.category for p in purchase_history])),
        "engagement_score": engagement.email_open_rate * 0.3 + 
                           engagement.site_visits * 0.7
    }
    
    # Predict LTV
    predicted_ltv = ltv_model.predict(features)
    
    # Segment customer
    if predicted_ltv > 5000:
        segment = "VIP"
        treatment = "white_glove_service"
    elif predicted_ltv > 1000:
        segment = "High_Value"
        treatment = "loyalty_program"
    else:
        segment = "Standard"
        treatment = "retention_campaigns"
    
    return {
        "predicted_ltv": predicted_ltv,
        "segment": segment,
        "recommended_treatment": treatment
    }

Fraud Detection

Protect against payment fraud and account takeovers.

class EcommerceFraudDetector:
    def evaluate_order(self, order):
        # Behavioral signals
        signals = {
            "velocity": self.check_order_velocity(order.user_id),
            "device_match": self.check_device_history(order.device_id),
            "shipping_address": self.check_address_legitimacy(order.shipping),
            "payment_method": self.check_payment_risk(order.payment)
        }
        
        # ML fraud score
        fraud_score = fraud_model.predict(signals)
        
        if fraud_score > 0.8:
            return {"action": "BLOCK", "reason": "High fraud risk"}
        elif fraud_score > 0.5:
            return {"action": "MANUAL_REVIEW"}
        else:
            return {"action": "APPROVE"}

Email Marketing Optimization

AI personalizes email campaigns.

def optimize_email_campaign(recipient_list):
    personalized_emails = []
    
    for recipient in recipient_list:
        # Predict best send time
        send_time = predict_optimal_send_time(recipient.id)
        
        # Predict best subject line
        subject_variants = generate_subject_lines(recipient.segment)
        best_subject = predict_best_subject(subject_variants, recipient.profile)
        
        # Predict best products to feature
        products = recommend_products(recipient.id)
        
        # Generate personalized content
        email = {
            "to": recipient.email,
            "subject": best_subject,
            "send_time": send_time,
            "products": products,
            "discount": calculate_optimal_discount(recipient.ltv)
        }
        
        personalized_emails.append(email)
    
    return personalized_emails

Conversion Rate Optimization

AI tests and optimizes every element.

A/B Testing Automation:

class AutoABTest:
    def run_experiment(self, page_element):
        # Generate variants
        variants = self.generate_variants(page_element)
        
        # Multi-armed bandit algorithm
        while not self.has_statistical_significance():
            # Allocate traffic based on performance
            traffic_allocation = self.calculate_allocation(variants)
            
            # Serve variants
            self.serve_variants(variants, traffic_allocation)
            
            # Update performance metrics
            self.update_metrics()
        
        # Declare winner
        winner = self.select_winner(variants)
        self.deploy_winner(winner)

Supply Chain Optimization

AI predicts delays and optimizes logistics.

def optimize_delivery_route(orders):
    # Cluster orders by location
    clusters = clustering_algorithm.cluster(orders)
    
    # Route optimization for each cluster
    optimized_routes = []
    for cluster in clusters:
        route = vehicle_routing_solver.solve(
            orders=cluster,
            constraints={
                "max_capacity": 100,
                "max_duration": 8 * 60,  # 8 hours
                "traffic_data": get_real_time_traffic()
            }
        )
        optimized_routes.append(route)
    
    return optimized_routes

Performance Metrics

MetricBefore AIAfter AIImprovement
Conversion rate2.3%3.8%+65%
Average order value$75$95+27%
Cart abandonment69%52%-25%
Customer satisfaction78%91%+17%
Inventory turnover8x/year12x/year+50%

Implementation Roadmap

Month 1-2: Product recommendations Month 3-4: Dynamic pricing Month 5-6: Intelligent search Month 7-9: Conversational commerce Month 10-12: Full personalization

Tech Stack:

  • Recommendations: TensorFlow, PyTorch
  • Search: Elasticsearch + embeddings
  • Pricing: Custom ML models
  • Data: SERP API for competitor monitoring

AI in e-commerce is no longer optional—it’s table stakes. Companies that master AI personalization will dominate their markets.


E-commerce AI:

Infrastructure:

SearchCans provides competitive intelligence APIs for e-commerce. Start free and optimize your online retail strategy.

SearchCans Team

SearchCans Team

SearchCans Editorial Team

Global

The SearchCans editorial team consists of engineers, data scientists, and technical writers dedicated to helping developers build better AI applications with reliable data APIs.

API DevelopmentAI ApplicationsTechnical WritingDeveloper Tools
View all →

Trending articles will be displayed here.

Ready to try SearchCans?

Get 100 free credits and start using our SERP API today. No credit card required.