Traditional RAG systems have a critical flaw: they’re stuck in time. Your vector database contains yesterday’s knowledge, but users ask about today. Advanced RAG solves this by integrating real-time data sources, creating systems that are always current.
The Static RAG Problem
Traditional RAG Flow
User Query �?Vector DB (static, indexed weeks ago) �?
LLM Generation �?Potentially outdated answer
Problems:
- Knowledge cutoff (data becomes stale)
- Can’t answer time-sensitive questions
- Misses recent developments
- No access to news, prices, availability
Example Failure Scenario
Q: "What is the current stock price of Tesla?"
Static RAG: "Based on our documents, Tesla stock was $245..."
(Answer from 3 months ago)
Dynamic RAG Architecture
Architecture Diagram
User Query �?Intelligence Layer �?Route Decision
�?
┌───────────────┴───────────────�?
�? �?
Static Knowledge Real-Time Search
(Vector DB) (SERP + Reader API)
�? �?
└───────────────┬───────────────�?
�?
Unified Context
�?
LLM Generation
�?
Current Answer
Implementation
Step 1: Query Classification
Determine if query needs real-time data:
Query Classifier Implementation
class QueryClassifier:
def needs_realtime(self, query):
"""Classify if query requires current information"""
# Time-sensitive keywords
realtime_indicators = [
"current", "today", "now", "latest", "recent",
"price", "stock", "weather", "news",
"2024", "2025" # Recent years
]
# Check for indicators
query_lower = query.lower()
has_indicator = any(ind in query_lower for ind in realtime_indicators)
if has_indicator:
return True
# Use LLM for complex cases
classification = llm.generate(f"""
Does this question require real-time or very recent information?
Question: {query}
Answer: Yes/No with brief reason
""")
return "yes" in classification.lower()
Step 2: Hybrid Retrieval
Combine static and real-time sources:
Hybrid RAG Implementation
class HybridRAG:
def __init__(self, vector_store, serp_api_key, reader_api_key):
self.vector_store = vector_store
self.serp_api = SerpAPI(serp_api_key)
self.reader_api = ReaderAPI(reader_api_key)
self.classifier = QueryClassifier()
def retrieve(self, query):
"""Retrieve from both static and real-time sources"""
# Always get static knowledge
static_docs = self.vector_store.similarity_search(query, k=5)
# Check if realtime needed
if self.classifier.needs_realtime(query):
realtime_docs = self.fetch_realtime(query)
# Merge and deduplicate
all_docs = self.merge_documents(static_docs, realtime_docs)
return all_docs
else:
return static_docs
def fetch_realtime(self, query):
"""Fetch current information from web"""
# Search web
search_results = self.serp_api.search(query, num=5)
# Extract content from top results
realtime_docs = []
for result in search_results[:3]:
try:
content = self.reader_api.extract(result["link"])
realtime_docs.append({
"content": content["content"][:2000],
"source": result["title"],
"url": result["link"],
"date": "current", # Mark as current
"relevance": result["position"]
})
except:
continue
return realtime_docs
Learn about SERP API and Reader API.
Step 3: Contextual Ranking
Prioritize sources based on recency and relevance:
Source Ranking Function
def rank_sources(query, documents):
"""Rank documents by relevance and recency"""
scored_docs = []
for doc in documents:
score = 0
# Relevance score (semantic similarity)
relevance = calculate_similarity(query, doc["content"])
score += relevance * 0.6
# Recency score
if doc.get("date") == "current":
score += 0.4 # Boost real-time sources
elif doc.get("date"):
days_old = calculate_age(doc["date"])
recency_score = max(0, 1 - (days_old / 365))
score += recency_score * 0.4
scored_docs.append((doc, score))
# Sort by score
scored_docs.sort(key=lambda x: x[1], reverse=True)
return [doc for doc, score in scored_docs]
Step 4: Source Attribution
Track which information comes from where:
Attributed RAG Implementation
class AttributedRAG(HybridRAG):
def generate_with_sources(self, query):
"""Generate answer with clear source attribution"""
# Retrieve documents
documents = self.retrieve(query)
ranked_docs = rank_sources(query, documents)
# Prepare context with source markers
context_parts = []
for i, doc in enumerate(ranked_docs[:5], 1):
source_type = "REAL-TIME" if doc.get("date") == "current" else "KNOWLEDGE BASE"
context_parts.append(f"""
[Source {i}] ({source_type})
{doc["content"]}
URL: {doc.get("url", "N/A")}
""")
context = "\n\n".join(context_parts)
# Generate with attribution instructions
prompt = f"""
Based on the following sources, answer the question.
IMPORTANT: Cite sources using [1], [2], etc.
Prefer real-time sources for current information.
SOURCES:
{context}
QUESTION: {query}
ANSWER (with citations):
"""
answer = llm.generate(prompt)
return {
"answer": answer,
"sources": ranked_docs[:5]
}
Advanced Techniques
Multi-Query Strategy
Generate multiple search queries for comprehensive coverage:
Multi-Query Retrieval Function
def multi_query_retrieval(original_query):
"""Generate and execute multiple related queries"""
# Generate variations
query_variations = llm.generate(f"""
Generate 3 alternative phrasings of this query that would help find comprehensive information:
Original: {original_query}
Return only the 3 queries, one per line.
""").strip().split('\n')
# Search with all variations
all_results = []
for query in [original_query] + query_variations:
results = serp_api.search(query, num=3)
all_results.extend(results)
# Deduplicate by URL
unique_results = {r["link"]: r for r in all_results}.values()
return list(unique_results)
Temporal Filtering
Focus on recent information:
Temporal Search Function
def temporal_search(query, time_range="month"):
"""Search with time constraints"""
time_params = {
"day": "qdr:d",
"week": "qdr:w",
"month": "qdr:m",
"year": "qdr:y"
}
results = serp_api.search(
query,
num=10,
time_range=time_params.get(time_range, "qdr:m")
)
return results
Cross-Verification
Validate facts across multiple sources:
Fact Verification Function
def verify_fact(claim, sources):
"""Cross-check a claim across sources"""
confirmations = 0
contradictions = 0
for source in sources:
verification = llm.generate(f"""
Does this source confirm or contradict the claim?
Claim: {claim}
Source: {source["content"]}
Answer: CONFIRMS / CONTRADICTS / NEUTRAL
""")
if "CONFIRMS" in verification:
confirmations += 1
elif "CONTRADICTS" in verification:
contradictions += 1
confidence = confirmations / len(sources) if sources else 0
return {
"claim": claim,
"confidence": confidence,
"confirmations": confirmations,
"contradictions": contradictions,
"verdict": "verified" if confidence > 0.7 else "uncertain"
}
Real-World Use Cases
Use Case 1: News RAG
News RAG Implementation
class NewsRAG(HybridRAG):
def answer_news_query(self, query):
# Search recent news
news_results = self.serp_api.search(
f"{query} news",
num=10,
time_range="qdr:d" # Last 24 hours
)
# Extract articles
articles = []
for result in news_results[:5]:
content = self.reader_api.extract(result["link"])
articles.append({
"title": result["title"],
"content": content["content"],
"url": result["link"],
"published": content.get("date")
})
# Synthesize news summary
summary = llm.generate(f"""
Based on these recent news articles: {articles}
Summarize the latest developments regarding: {query}
Include:
- Key events
- Important quotes
- Timeline
- Implications
""")
return summary
Use Case 2: Price Monitoring RAG
Price RAG Implementation
def price_rag(product_query):
"""Real-time product price information"""
# Search for current prices
price_results = serp_api.search(
f"{product_query} price buy online",
num=10
)
# Extract prices from merchant sites
prices = []
for result in price_results:
if is_ecommerce_site(result["domain"]):
content = reader_api.extract(result["link"])
price = extract_price(content["content"])
if price:
prices.append({
"merchant": result["domain"],
"price": price,
"url": result["link"],
"availability": extract_availability(content["content"])
})
# Generate comparison
comparison = llm.generate(f"""
Based on current prices: {prices}
Provide:
- Best price
- Price range
- Availability summary
- Buying recommendation
""")
return comparison
Use Case 3: Academic RAG
Academic RAG Implementation
class AcademicRAG(HybridRAG):
def research_topic(self, topic):
# Search recent papers
papers = self.serp_api.search(
f"{topic} research paper 2024 2025",
num=20
)
# Extract from academic sources
academic_content = []
for paper in papers:
if is_academic_source(paper["domain"]):
content = self.reader_api.extract(paper["link"])
academic_content.append({
"title": paper["title"],
"content": content["content"],
"url": paper["link"]
})
# Combine with existing knowledge base
kb_papers = self.vector_store.search(topic, k=10)
# Synthesize literature review
review = llm.generate(f"""
Recent papers: {academic_content}
Knowledge base: {kb_papers}
Create a literature review on: {topic}
Include:
- Recent findings
- Emerging trends
- Research gaps
- Future directions
""")
return review
Performance Optimization
Caching Strategy
import hashlib
from datetime import datetime, timedelta
class CachedHybridRAG(HybridRAG):
def __init__(self, *args, cache_ttl_hours=1):
super().__init__(*args)
self.cache = {}
self.cache_ttl = timedelta(hours=cache_ttl_hours)
def fetch_realtime(self, query):
# Check cache
cache_key = hashlib.md5(query.encode()).hexdigest()
if cache_key in self.cache:
cached_data, timestamp = self.cache[cache_key]
if datetime.now() - timestamp < self.cache_ttl:
return cached_data
# Fetch fresh data
data = super().fetch_realtime(query)
# Cache it
self.cache[cache_key] = (data, datetime.now())
return data
Parallel Fetching
from concurrent.futures import ThreadPoolExecutor
def parallel_fetch(urls, reader_api):
with ThreadPoolExecutor(max_workers=5) as executor:
futures = [executor.submit(reader_api.extract, url) for url in urls]
results = [f.result() for f in futures]
return results
Monitoring and Evaluation
class RAGMonitor:
def track_answer_quality(self, query, answer, sources):
metrics = {
"query": query,
"answer_length": len(answer),
"num_sources": len(sources),
"realtime_sources": sum([1 for s in sources if s.get("date") == "current"]),
"static_sources": sum([1 for s in sources if s.get("date") != "current"]),
"timestamp": datetime.now()
}
# Log for analysis
self.log_metrics(metrics)
return metrics
Cost Management
def cost_aware_rag(query, budget_per_query=0.10):
"""Implement cost controls"""
estimated_cost = estimate_query_cost(query)
if estimated_cost > budget_per_query:
# Use cheaper strategy
return basic_rag(query, max_sources=3)
else:
return advanced_rag(query, max_sources=10)
Learn more: LLM cost optimization.
Best Practices
1. Smart Routing: Not every query needs real-time data 2. Source Quality: Prioritize authoritative sources 3. Freshness Indicators: Show users when information was last updated 4. Graceful Degradation: Fall back to static knowledge if real-time fails 5. Cost Monitoring: Track API usage 6. User Feedback: Learn which queries need real-time data
Advanced RAG with real-time data creates systems that are always current, providing users with the most up-to-date information available.
Related Resources
RAG Systems:
APIs:
Get Started:
SearchCans provides real-time data APIs for advanced RAG systems. Start building with $5 free credits.