SearchCans

Dynamic Knowledge Updating with SERP & Reader APIs | Building Advanced RAG

Go beyond static RAG systems by integrating real-time data from SERP and Reader APIs. Learn how to build RAG systems that stay current with the latest information.

5 min read

Traditional RAG systems have a critical flaw: they’re stuck in time. Your vector database contains yesterday’s knowledge, but users ask about today. Advanced RAG solves this by integrating real-time data sources, creating systems that are always current.

The Static RAG Problem

Traditional RAG Flow

User Query �?Vector DB (static, indexed weeks ago) �?
LLM Generation �?Potentially outdated answer

Problems:

  1. Knowledge cutoff (data becomes stale)
  2. Can’t answer time-sensitive questions
  3. Misses recent developments
  4. No access to news, prices, availability

Example Failure Scenario

Q: "What is the current stock price of Tesla?"
Static RAG: "Based on our documents, Tesla stock was $245..." 
(Answer from 3 months ago)

Dynamic RAG Architecture

Architecture Diagram

User Query �?Intelligence Layer �?Route Decision
                                    �?
                    ┌───────────────┴───────────────�?
                    �?                              �?
            Static Knowledge                  Real-Time Search
            (Vector DB)                      (SERP + Reader API)
                    �?                              �?
                    └───────────────┬───────────────�?
                                    �?
                            Unified Context
                                    �?
                            LLM Generation
                                    �?
                            Current Answer

Implementation

Step 1: Query Classification

Determine if query needs real-time data:

Query Classifier Implementation

class QueryClassifier:
    def needs_realtime(self, query):
        """Classify if query requires current information"""
        
        # Time-sensitive keywords
        realtime_indicators = [
            "current", "today", "now", "latest", "recent",
            "price", "stock", "weather", "news",
            "2024", "2025"  # Recent years
        ]
        
        # Check for indicators
        query_lower = query.lower()
        has_indicator = any(ind in query_lower for ind in realtime_indicators)
        
        if has_indicator:
            return True
        
        # Use LLM for complex cases
        classification = llm.generate(f"""
        Does this question require real-time or very recent information?
        Question: {query}
        Answer: Yes/No with brief reason
        """)
        
        return "yes" in classification.lower()

Step 2: Hybrid Retrieval

Combine static and real-time sources:

Hybrid RAG Implementation

class HybridRAG:
    def __init__(self, vector_store, serp_api_key, reader_api_key):
        self.vector_store = vector_store
        self.serp_api = SerpAPI(serp_api_key)
        self.reader_api = ReaderAPI(reader_api_key)
        self.classifier = QueryClassifier()
    
    def retrieve(self, query):
        """Retrieve from both static and real-time sources"""
        
        # Always get static knowledge
        static_docs = self.vector_store.similarity_search(query, k=5)
        
        # Check if realtime needed
        if self.classifier.needs_realtime(query):
            realtime_docs = self.fetch_realtime(query)
            
            # Merge and deduplicate
            all_docs = self.merge_documents(static_docs, realtime_docs)
            return all_docs
        else:
            return static_docs
    
    def fetch_realtime(self, query):
        """Fetch current information from web"""
        
        # Search web
        search_results = self.serp_api.search(query, num=5)
        
        # Extract content from top results
        realtime_docs = []
        for result in search_results[:3]:
            try:
                content = self.reader_api.extract(result["link"])
                
                realtime_docs.append({
                    "content": content["content"][:2000],
                    "source": result["title"],
                    "url": result["link"],
                    "date": "current",  # Mark as current
                    "relevance": result["position"]
                })
            except:
                continue
        
        return realtime_docs

Learn about SERP API and Reader API.

Step 3: Contextual Ranking

Prioritize sources based on recency and relevance:

Source Ranking Function

def rank_sources(query, documents):
    """Rank documents by relevance and recency"""
    
    scored_docs = []
    for doc in documents:
        score = 0
        
        # Relevance score (semantic similarity)
        relevance = calculate_similarity(query, doc["content"])
        score += relevance * 0.6
        
        # Recency score
        if doc.get("date") == "current":
            score += 0.4  # Boost real-time sources
        elif doc.get("date"):
            days_old = calculate_age(doc["date"])
            recency_score = max(0, 1 - (days_old / 365))
            score += recency_score * 0.4
        
        scored_docs.append((doc, score))
    
    # Sort by score
    scored_docs.sort(key=lambda x: x[1], reverse=True)
    return [doc for doc, score in scored_docs]

Step 4: Source Attribution

Track which information comes from where:

Attributed RAG Implementation

class AttributedRAG(HybridRAG):
    def generate_with_sources(self, query):
        """Generate answer with clear source attribution"""
        
        # Retrieve documents
        documents = self.retrieve(query)
        ranked_docs = rank_sources(query, documents)
        
        # Prepare context with source markers
        context_parts = []
        for i, doc in enumerate(ranked_docs[:5], 1):
            source_type = "REAL-TIME" if doc.get("date") == "current" else "KNOWLEDGE BASE"
            context_parts.append(f"""
[Source {i}] ({source_type})
{doc["content"]}
URL: {doc.get("url", "N/A")}
            """)
        
        context = "\n\n".join(context_parts)
        
        # Generate with attribution instructions
        prompt = f"""
Based on the following sources, answer the question.
IMPORTANT: Cite sources using [1], [2], etc.
Prefer real-time sources for current information.

SOURCES:
{context}

QUESTION: {query}

ANSWER (with citations):
"""
        
        answer = llm.generate(prompt)
        
        return {
            "answer": answer,
            "sources": ranked_docs[:5]
        }

Advanced Techniques

Multi-Query Strategy

Generate multiple search queries for comprehensive coverage:

Multi-Query Retrieval Function

def multi_query_retrieval(original_query):
    """Generate and execute multiple related queries"""
    
    # Generate variations
    query_variations = llm.generate(f"""
    Generate 3 alternative phrasings of this query that would help find comprehensive information:
    
    Original: {original_query}
    
    Return only the 3 queries, one per line.
    """).strip().split('\n')
    
    # Search with all variations
    all_results = []
    for query in [original_query] + query_variations:
        results = serp_api.search(query, num=3)
        all_results.extend(results)
    
    # Deduplicate by URL
    unique_results = {r["link"]: r for r in all_results}.values()
    
    return list(unique_results)

Temporal Filtering

Focus on recent information:

Temporal Search Function

def temporal_search(query, time_range="month"):
    """Search with time constraints"""
    
    time_params = {
        "day": "qdr:d",
        "week": "qdr:w", 
        "month": "qdr:m",
        "year": "qdr:y"
    }
    
    results = serp_api.search(
        query,
        num=10,
        time_range=time_params.get(time_range, "qdr:m")
    )
    
    return results

Cross-Verification

Validate facts across multiple sources:

Fact Verification Function

def verify_fact(claim, sources):
    """Cross-check a claim across sources"""
    
    confirmations = 0
    contradictions = 0
    
    for source in sources:
        verification = llm.generate(f"""
        Does this source confirm or contradict the claim?
        
        Claim: {claim}
        Source: {source["content"]}
        
        Answer: CONFIRMS / CONTRADICTS / NEUTRAL
        """)
        
        if "CONFIRMS" in verification:
            confirmations += 1
        elif "CONTRADICTS" in verification:
            contradictions += 1
    
    confidence = confirmations / len(sources) if sources else 0
    
    return {
        "claim": claim,
        "confidence": confidence,
        "confirmations": confirmations,
        "contradictions": contradictions,
        "verdict": "verified" if confidence > 0.7 else "uncertain"
    }

Real-World Use Cases

Use Case 1: News RAG

News RAG Implementation

class NewsRAG(HybridRAG):
    def answer_news_query(self, query):
        # Search recent news
        news_results = self.serp_api.search(
            f"{query} news",
            num=10,
            time_range="qdr:d"  # Last 24 hours
        )
        
        # Extract articles
        articles = []
        for result in news_results[:5]:
            content = self.reader_api.extract(result["link"])
            articles.append({
                "title": result["title"],
                "content": content["content"],
                "url": result["link"],
                "published": content.get("date")
            })
        
        # Synthesize news summary
        summary = llm.generate(f"""
        Based on these recent news articles: {articles}
        
        Summarize the latest developments regarding: {query}
        
        Include:
        - Key events
        - Important quotes
        - Timeline
        - Implications
        """)
        
        return summary

Use Case 2: Price Monitoring RAG

Price RAG Implementation

def price_rag(product_query):
    """Real-time product price information"""
    
    # Search for current prices
    price_results = serp_api.search(
        f"{product_query} price buy online",
        num=10
    )
    
    # Extract prices from merchant sites
    prices = []
    for result in price_results:
        if is_ecommerce_site(result["domain"]):
            content = reader_api.extract(result["link"])
            price = extract_price(content["content"])
            
            if price:
                prices.append({
                    "merchant": result["domain"],
                    "price": price,
                    "url": result["link"],
                    "availability": extract_availability(content["content"])
                })
    
    # Generate comparison
    comparison = llm.generate(f"""
    Based on current prices: {prices}
    
    Provide:
    - Best price
    - Price range
    - Availability summary
    - Buying recommendation
    """)
    
    return comparison

Use Case 3: Academic RAG

Academic RAG Implementation

class AcademicRAG(HybridRAG):
    def research_topic(self, topic):
        # Search recent papers
        papers = self.serp_api.search(
            f"{topic} research paper 2024 2025",
            num=20
        )
        
        # Extract from academic sources
        academic_content = []
        for paper in papers:
            if is_academic_source(paper["domain"]):
                content = self.reader_api.extract(paper["link"])
                academic_content.append({
                    "title": paper["title"],
                    "content": content["content"],
                    "url": paper["link"]
                })
        
        # Combine with existing knowledge base
        kb_papers = self.vector_store.search(topic, k=10)
        
        # Synthesize literature review
        review = llm.generate(f"""
        Recent papers: {academic_content}
        Knowledge base: {kb_papers}
        
        Create a literature review on: {topic}
        
        Include:
        - Recent findings
        - Emerging trends
        - Research gaps
        - Future directions
        """)
        
        return review

Performance Optimization

Caching Strategy

import hashlib
from datetime import datetime, timedelta

class CachedHybridRAG(HybridRAG):
    def __init__(self, *args, cache_ttl_hours=1):
        super().__init__(*args)
        self.cache = {}
        self.cache_ttl = timedelta(hours=cache_ttl_hours)
    
    def fetch_realtime(self, query):
        # Check cache
        cache_key = hashlib.md5(query.encode()).hexdigest()
        
        if cache_key in self.cache:
            cached_data, timestamp = self.cache[cache_key]
            if datetime.now() - timestamp < self.cache_ttl:
                return cached_data
        
        # Fetch fresh data
        data = super().fetch_realtime(query)
        
        # Cache it
        self.cache[cache_key] = (data, datetime.now())
        
        return data

Parallel Fetching

from concurrent.futures import ThreadPoolExecutor

def parallel_fetch(urls, reader_api):
    with ThreadPoolExecutor(max_workers=5) as executor:
        futures = [executor.submit(reader_api.extract, url) for url in urls]
        results = [f.result() for f in futures]
    return results

Monitoring and Evaluation

class RAGMonitor:
    def track_answer_quality(self, query, answer, sources):
        metrics = {
            "query": query,
            "answer_length": len(answer),
            "num_sources": len(sources),
            "realtime_sources": sum([1 for s in sources if s.get("date") == "current"]),
            "static_sources": sum([1 for s in sources if s.get("date") != "current"]),
            "timestamp": datetime.now()
        }
        
        # Log for analysis
        self.log_metrics(metrics)
        
        return metrics

Cost Management

def cost_aware_rag(query, budget_per_query=0.10):
    """Implement cost controls"""
    
    estimated_cost = estimate_query_cost(query)
    
    if estimated_cost > budget_per_query:
        # Use cheaper strategy
        return basic_rag(query, max_sources=3)
    else:
        return advanced_rag(query, max_sources=10)

Learn more: LLM cost optimization.

Best Practices

1. Smart Routing: Not every query needs real-time data 2. Source Quality: Prioritize authoritative sources 3. Freshness Indicators: Show users when information was last updated 4. Graceful Degradation: Fall back to static knowledge if real-time fails 5. Cost Monitoring: Track API usage 6. User Feedback: Learn which queries need real-time data

Advanced RAG with real-time data creates systems that are always current, providing users with the most up-to-date information available.


RAG Systems:

APIs:

Get Started:

SearchCans provides real-time data APIs for advanced RAG systems. Start building with $5 free credits.

SearchCans Team

SearchCans Team

SearchCans Editorial Team

Global

The SearchCans editorial team consists of engineers, data scientists, and technical writers dedicated to helping developers build better AI applications with reliable data APIs.

API DevelopmentAI ApplicationsTechnical WritingDeveloper Tools
View all →

Trending articles will be displayed here.

Ready to try SearchCans?

Get 100 free credits and start using our SERP API today. No credit card required.